Benchmark Suite Results

MLPerf Inference: Tiny

The MLPerf Inference: Tiny benchmark suite measures how fast systems can process inputs and produce results using a trained model. Below is a short summary of the current benchmarks and metrics. Please see the MLPerf Inference benchmark paper for a detailed description of the motivation and guiding principles behind the benchmark suite. 


Results

The MLPerf Inference: Tiny benchmark suite measures how fast systems can process inputs and produce results using a trained model. Below is a short summary of the current benchmarks and metrics. Please see the MLPerf Inference benchmark paper for a detailed description of the motivation and guiding principles behind the benchmark suite. 


Benchmarks

Each benchmark is defined by a Dataset and Quality Target. The following table summarizes the benchmarks in this version of the suite (the rules remain the official source of truth): 

TaskDatasetModelModeQualityLatest Version Available
Image classificationCIFAR-10ResnetSingle-stream85% (Top 1)v1.3
Person Detection (visual wakeword)COCOMobileNetSingle-stream80% (Top-1)v1.3
Keyword SpottingSpeech CommandsDS-CNNSingle-stream, Offline90% (Top 1)v1.3
Anomaly DetectionADMOS Toy CarDenseSingle-stream0.85 (AUC)v1.3
Streaming WakewordCustom (Speech Commands + MUSAN)1D DS-CNNStreaming≤ 8 False Positive, ≤ 8 False Negativev1.3

All MLPerf Tiny benchmarks are single stream, meaning they measure the latency of a single inference. The benchmarks also measure the model quality, which is either accuracy or AUC depending on the benchmark. MLPerf Tiny also enables optional energy benchmarking. 

Divisions

MLPerf aims to encourage innovation in software as well as hardware by allowing submitters to reimplement the reference implementations. There are two Divisions that allow different levels of flexibility during reimplementation:

  • The Closed division is intended to compare hardware platforms or software frameworks “apples-to-apples” and requires using the same model as the reference implementation.
  • The Open division is intended to foster innovation and allows using a different model or retraining. 

Availability

MLPerf divides benchmark results into Categories based on availability. 

  • Available systems contain only components that are available for purchase or for rent in the cloud. 
  • Preview systems must be submittable as Available in the next submission round.
  • Research, Development, or Internal (RDI) contain experimental, in development, or internal-use hardware or software.

Submission Information

Each row in the results table is a set of results produced by a single submitter  using the same software stack and hardware platform. Each Closed division row contains the following information:

  • Submitter

    The organization that submitted the results.

  • Software

    The ML framework and primary ML hardware library used.

  • System

    General system description.

  • Benchmark Results

    Results for each benchmark as described above.

  • Processor and Count

    The type and number of CPUs used, if CPUs perform the majority of ML compute.

  • Details

    Link to metadata for submission.

  • Accelerator and Count

    The type and number of accelerators used, if accelerators perform the majority of ML compute.

  • Code

    Link to code for submission.

Open Divisions

You may add the following rows:


Model Used
The model used to produce the results, which may or may not match the Closed Division requirement.

Notes
Arbitrary notes from submitter.

Power Measurements

Each row will add columns for each benchmark containing the following:


System Power
for Server and Offline scenarios, or…

Energy Per Stream
for Single stream and Multiple stream scenarios

Privacy Overview

This website uses cookies so that we can provide you with the best user experience possible. Cookie information is stored in your browser and performs functions such as recognising you when you return to our website and helping our team to understand which sections of the website you find most interesting and useful.